One of the main goals of neuroscience is to understand the biological mechanisms responsible for human mental activity. In particular, the study of the cerebral cortex is and without any doubt will be the greatest challenge for science in the next centuries, since it represents the foundation of our humanity. In other words, the cerebral cortex is the structure whose activity is related to the capabilities that distinguish humans from other mammals. Thanks to the development and evolution of the cerebral cortex we are able to perform highly complex and specifically human tasks, such as writing a book, composing a symphony or developing technologies.

For these reasons the Blue Brain project emerged in 2005, when the L’Ecole Polytechnique Fédérale de Lausanne (Switzerland) and IBM jointly launched an ambitious project to create a functional brain model by means of reverse engineering of the mammalian brain, using the Blue Gene supercomputer from IBM. The aim was to understand the functioning and dysfunction of the brain through detailed simulations. By late 2006, the Blue Brain project had created a model of the basic functional unit of the brain, the neocortical column. However, the goals set by the project, which covered a period of 10 years, imposed its conversion into an international initiative (The Blue Brain Project, Nat Rev Neurosci. 7, 153-160, 2006). In this context, the Cajal Blue Brain project, the Spanish contribution to this international project, started in January 2009 led by the Universidad Politécnica de Madrid (UPM) and the Consejo Superior de Investigaciones Científicas (CSIC) .

Responsive image

Neuronal Forest simulation

Art and Technical Direction: Luis Pastor, Ángel Rodríguez, Susana Mata and Sofía Bayona - Art and Technical - Production and Development: Juan Pedro Brito and Luis Miguel Serrano - Technical Advice: José Miguel Espadero - Art Advice: Eva Cortés - Scientific Advice: Javier DeFelipe y Ruth Benavides-Piccione

"The garden of neurology offers the investigator captivating spectacles and incomparable artistic emotions. In it, my aesthetic instincts were at last full satisfied. Like the entomologist hunting for brightly colored butterflies, my attention was drawn to the flower garden of the gray matter that contained cells with delicate and elegant forms, the mysterious butterflies of the soul, the beating of whose wings may some day (who knows?) clarify the secret of mental life. […] Even from the aesthetic point of view, the nervous tissue contains the most charming attractions. In our parks is there any tree more elegant and luxurious than the Purkinje cell from the cerebellum or the psychic cell, that is the famous cerebral pyramid?"

Santiago Ramón y Cajal, 1894

Overall, the Blue Brain Project is based on the hypothesis of some scientists that detailed maps of the synaptic connections will be needed in order to understand how the brain functions. Such large-scale circuit reconstructions, “connectome and synaptome”, will soon be possible thanks to recent technological advances in the acquisition and processing of experimental data. Although the scientific community is divided on the feasibility and value of this working hypothesis, it is important to note that similar objections were voiced when the Human Genome Project was first proposed, now widely considered as a great scientific success.

One of the strengths of the Cajal Blue Brain project is that all the participating laboratories and research groups will be coordinated, so that all the effort will be channelled towards a specific objective, using strictly common methodological criteria. Thus, the data generated in a laboratory can be effectively used by other research groups. Definitively, the Cajal Blue Brain project is structured in such a way that it will work as a single, large multidisciplinary laboratory. In this way, the project will generate significant advances in our understanding of the structure and function of the normal brain.

Responsive image
CeSViMa Supercomputer